kuniga.me > Docs > Trigonometry Cheat Sheet
Sum of angles:
\[\sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)\] \[\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y)\]In case $x = y$:
\[\sin(2x) = 2 \sin(x) \cos(x)\] \[\cos(2x) = \cos(x)^2 - \sin(x)^2\]For $x \in \mathbb{R}$:
\[e^{ix} = \cos(x) + i \sin(x)\]