kuniga.me > Docs > Modulus Cheat Sheet
Keywords: absolute value
Property 1. Let
\[\abs{a - b} \lt \abs{c}\]then
\[\abs{b} - \abs{c} \lt \abs{a} \lt \abs{b} + \abs{c}\]Property 2. Suppose that for every $0 \lt \epsilon \lt 1$, the following holds:
\[\frac{b}{1 + \epsilon} \lt \abs{a} \lt \frac{b}{1 - \epsilon}\]then, for every $\delta \gt 0$:
\[\abs{a - b} \lt \delta\]